1 Solve the equation $2 \sec ^{2} \theta=5 \tan \theta$, for $0 \leqslant \theta \leqslant \pi$.

2 Solve, correct to 2 decimal places, the equation cot $2 \theta=3$ for $0^{\circ} \leqslant \theta \leqslant 180^{\circ}$.

3 Fig. 8 shows a searchlight, mounted at a point A, 5 metres above level ground. Its beam is in the shape of a cone with axis AC, where C is on the ground. AC is angled at α to the vertical. The beam produces an oval-shaped area of light on the ground, of length DE. The width of the oval at C is GF. Angles DAC, EAC, FAC and GAC are all β.

Fig. 8
In the following, all lengths are in metres.
(i) Find AC in terms of α, and hence show that GF $=10 \sec \alpha \tan \beta$.
(ii) Show that $\mathrm{CE}=5(\tan (\alpha+\beta)-\tan \alpha)$.

Hence show that $\mathrm{CE}=\frac{5 \tan \beta \sec ^{2} \alpha}{1-\tan \alpha \tan \beta}$.
Similarly, it can be shown that $\mathrm{CD}=\frac{5 \tan \beta \sec ^{2} \alpha}{1+\tan \alpha \tan \beta}$. [You are not required to derive this result.]
You are now given that $\alpha=45^{\circ}$ and that $\tan \beta=t$.
(iii) Find CE and CD in terms of t. Hence show that $\mathrm{DE}=\frac{20 t}{1-t^{2}}$.
(iv) Show that GF $=10 \sqrt{2} t$.

For a certain value of $\beta, \mathrm{DE}=2 \mathrm{GF}$.
(v) Show that $t^{2}=1-\frac{1}{\sqrt{2}}$.

Hence find this value of β.

4 Show that $\cot 2 \theta=\frac{1-\tan ^{2} \theta}{2 \tan \theta}$.
Hence solve the equation

$$
\begin{equation*}
\cot 2 \theta=1+\tan \theta \quad \text { for } 0^{\circ}<\theta<360^{\circ} . \tag{7}
\end{equation*}
$$

5 Prove that $\cot \beta-\cot \alpha=\frac{\sin (\alpha-\beta)}{\sin \alpha \sin \beta}$.

6 Solve the equation $\operatorname{cosec} \theta=3$, for $0^{\circ}<\theta<360^{\circ}$.

